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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL TRANSLATION F-70

AERODYNAMIC EFFECTS 0FMETEORITES. A SPECIFIC CASE*

By K. P. Stanyukovich

Meteor bodies begin to experience an intense luminescence and

braking at altitudes of the order of lO0 kilometers and lower. At

these altitudes 3 the length of the free path of atmosphere molecules

is measurable in centimeters and millimeters, and this considerably

exceeds the usual dimensions of meteor bodies. That is why discrete

molecule collisions with a meteor body may be considered in the study

of their motion. At high velocities of meteor body motion (18 to

20 km/sec)j every colliding molecule knocks out a considerable number

of atoms or molecules from the meteor body crystal lattice and provokes

some sort of mlcroexplosions at its surface. At the same time, not

only the evaporated mass, but also a simply-fractioned mass consisting

of a group of the lattice bound particles is being ejected from the

surface of the meteor body. (See refs. 1 and 2.)

The ejection speed of the mass M is lower than the thermal mass

(that is, it is lower than the speed corresponding to evaporation

temperature), while the quantity of motion (momentum) I, or the cor-

responding "reaction" impulse of recoil is greater than at ejection

of only a gaseous mass, inasmuch as I _ _, where E is the ejection

energy (ref. 3). A similar process leads to a higher deceleration value

or to the increase of the dimensionless coefficient of resistance.

Let us wrlte the conservation of momentum and energy (in a system

of coordinates in which air is at rest), as follows:

d(Mu) +Ul°dm + u2°dM (1)

d(Mu 2) + Ul2dm + 2dEb* = u22dM (2)

Here M is the mass of the meteor body, m is the mass of mole-

cules of the atmospher_ colliding with the meteor body, and u is the

meteor body velocity; uI and u 2 are the speeds of divergence of

*Translation of "0b odnom effekte v oblasti aerodinamiki meteorov."

Izvestlya Akademii Nauk SSSR, Otdeleniye Tekhnichesklkh Nauk, Mekhanika

i Mashlnostroyeniye, no. 5, 1960, pp. 3-8.
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air molecules and lattice "particles," respectively, from the surface
of the meteor body, Ul° and u2° are the velocities of the same,
projected normal to the direction of flight, arid Eb* is the intrinsic
energy acquired by the meteor body, which part]y changes into radiation.

If_ at time of impact,

k#-m--__ > cx (3)
2\i+ _j

where ek is the mass density of energies of lhe meteor body crystal

lattice (density of evaporation energy), a vaporization of a certain

quantity of lattice particles will take place.

The evaporation will end under the following conditions:

if uk_2 (_ _a

where _ is the molecular weight of the lattice, and _a is the molec-
ular weight of the atmosphere.

Therefore, the evaporated mass will be determined by the expression,

M iek = _(u 2 - Uk 2) = _u 2 - (I + _)2mck

Let us write, for simplicity of notation,

mFu2 _)_Mi = L2_k- (1 +

dM = M; dm = m. Hence

(4)

The evaporated mass will be endowed with an energy:

_.' =21-_k2 = (1 + _)_k (_)

The product "gas" will be endowed with an energy:
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cv
Eb : _TiM i + E'

[-Cv u2 )I

_cv ! u 2

= mL-_Z-Ti t 2"_k

m

The mean energy density will be:

6 -
m +M i

(6)

1 + u2/2ek - (l + o_)2

(7)

Aside from "evaporation" of the lattice in a certain area, it will

be simply breaking up in the area adjacent to the evaporated zone.

Let e* be the minimum density of energy at which this phenomenon

still takes place; then, the total mass M n of the deformed lattice

will be determined by the relation

Mn +m -
Eb -ZkE

9@
6

provided _ > e*, where AF, are the losses of energy serving the partial

destruction and deformation of the lattice, while the following may be
written

i)c*

where the factor _ < i shows what part of energy is irreversibly
expended on the deformation of the lattice.

We definitely may write that



Mn +m = + _ i + __l__
i+_

(8)

From equations (4), (6), and (8), we have

_ m g Iu2

Mn i+_ _[_k

(9)

with _ = 0 when c = _, and q = _0 < i when c* < _.

It may be estimated that the difference of velocities uI - u = Vl,

where v I is the speed of escape of atmosphere molecules from the meteor

body; it is determined by the molecule thermal velocity

v12 _ R Ti* _ c_Ti*

2 _a k - i _a
(10)

where Ti* is the atmosphere molecule "temlerature," not equal to the

temperature of evaporation.

The difference of the velocities u 2 - u = v2, where v2 is the

velocity of departure of lattice particles from the surface of the

meteor body; it is determined by the relaticn

v22 Eb - AE

2 m+M n
- c* (11)

The velocity of particle departure, in the case of evaporation

only (without taking into account the additional fractioning), will

be determined by the relation

2

v2i _
2

_ CvTi (i + _)2c k - (Cv/B)T i
(12)

Now it is necessary to establish the relationship between the

magnitudes Ul° and u2° and the magnitudes uI and u2.



For a large numberof collisions, the particle departure velocity
projected normal to the surface of departure will be:

Vl, 2 = Vl, 2

The velocity uo will be:1,2

F
7
0

u° _v_132 _*_Vl, 21,2 =u + = u + (13)

For an isotropic departure in the hemisphere _* = _, the coeffi-

cient _ depends on the shape of the body. Since _ = _* = i for a
2

spherical body 3 for a cone with an angle e at its apex, _ = sin 8;

for a plane 3 _ = 13 and so forth. Therefore,

u° = u + _v (14)
132 2 132

Let us take advantage of the expressions

dm = Spudt dM = -dmf(u) (15)

where S is the surface of the meteor body cross section,

f(u) = __i__ + - (1
1 + n _c*/\2_k + _)2)+ e_(l + _)2- I_ (16)

Transforming equation (i), we find that

sou UE+IIdt -- + f(u) u 1 (17)

The usual aerodynamic notation calls for

: pu2 (18)
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Comparing equations (17) and (18), we find that

_Ulo (_o ,,Cx = 2 + l_f(u)i: ox(u)
i u / j

Transforming equation (19), we may write that

(19)

Cx 2_ _*_ v= + u ( i - v2f(u)

V (2o)

Substituting the values of velocities, we finally obtain

Cx : 2 +_ _-T)_a +

+_(i +_) -
6

(i + _)2)

Let us pose

(21)

k :_ _ : 0 _a = 3O _ : 6O _ =£
3 2

We then shall have

cx= 2 _U2O + _..\_m-_;\2-_-_k- + _ -

With u2 > ek > e*, and neglecting the secondary terms, we shall
obtain

+ _67_j (23)

RT i RT i

e* = (k i)_ = _--- = 6 x 109e_r--_ (Ti = 3,0('0° ) ek _ 7 x I0 I0 erg- gr gr

Assuming (for iron)
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we shall obtain

cx = 2 + 0.16 X i06_u9--+ 2.4 X lO-12u 1 (24)

The values cx calculated after this formula for certain values u

expressed in kilometer/sec are as follows:

F

7
0

u = i0 20 30 40 50 60 70 80 90 lO0

c = 3.8 3.5 3.6 3.9 4.2 4.5 4.9 5.3 5.6 6.o

With u = 20 km/sec, the function Cx(U ) has a minimum cx = 3.46. In

the general case cx has a minimumwith

u2--:-(1+ _)2 + (_k/_*)(l + ,_)2 _ z
2ek RTi

+
(k - 1)_*

+ i + _, [ RTi

+ RTi _2(k - l)_ae*

(k - 1)_*

(2_)

The value of the shock impulse is

AT = -_u = /kmUCx (Zkm = SpuZht) (26)

On the basis of equation (21), this expression may be written in the
form

where

a = _<_( RTik _ i)_ a

AT =Z_2u + a+ bu 2]

i + qb* -1 - (l +_) +

(27)
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The magnitude AT

great velocities

increases with the increase in velocity. For

AT _ bzhmu2 ~ ZkE0

where 2_E0 is the power of the impact. We thus reach the known con-

clusion, that in case of an impact with explosion, the quantity of

motion is proportional to the energy of the impact (ref. _).

However, the relationship factors (eq. (27)) differ somewhat from

a similar relationship for the solid-body impact, inasmuch as a some-

what different mechanism of impact takes place in this case than at

discrete molecule impact. (The gas produced has a high temperature,

and the substance evaporates less, a then becoming smaller.)

It should now be noted that with molecule impact at speeds lower

than those provoking "evaporation," v 2 = 0 and cx = 2Ul°/U; further-

more, Ul° = a°u + a*aVlj where for dlscrete collisions ao = l, for

a compact medium, ao < 1 (ao _ a) and it depends on the form of the

body and on flowing-around condlt_ons. Thus,

+ + +u (28)

In case of elastic impact,

v I = u and cx = 4_

In case of compact medium collision wita high velocities, a flowing-

around will take place, and this will reduce the reactive force of

departing lattice particles. But the stabilized evaporation regime will

also lead to the increase of cx in comparison with a flowing-around

without evaporation. The effective value of the transverse cross sec-

tion S will then somehow increase, and this leads to the increase of

resistance. It may then be estimated that

F
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Ul° = _(u + _°*u_ u2° = u + aaO*u 2 (29)

where the magnitude ao. < M. 1
= _, and it wiLl depend on conditions of

flowing-around.

This problem is extremely complex, and [t requires a special

complementary solution.
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It must be particularly noted that at very high velocities, even
the force of resistance F _ u3.

The dependence of cx on u brought forth, makes sense, as we

have shown, even at greater impact velocities than uk. At smaller

impact velocities, it will be almost elastic. It is interesting to

note that if cx = 4 in the case of an absolutely elastic impact against

a surface, in the case of explosive phenomena cx has a comparable and

even larger value 3 in spite of the fact that the impact on the surface

is not elastic. That is why similar "velocity" collisions are con-

ditionally, somehow, superelastic.

During the analysis of the dependence cx = Cx(U) , it is indicated

to take into account that at impact velocities of the order of lO to

15 km/sec, it is necessary to make use of a more precise general expres-

sion (eq. (21)). Then the minimum cx will be considerably weaker; it

will generally disappear, and an almost smooth increase with velocity
may be observed.

Let us now take advantage of equation (2). After transformations 3

we arrive at the following expression:

_ UUl° - 1/2Ul2dEb* l(u2 + u2 2) +
dM uu20 - 2" f(u)

(3o)

Inasmuch as

dmb_

dM
= ek + _e*(Mn - Mi) _ 2e k

it is possible to determine the values v I and Ti* from equation (30),

the value Ti* being close to the value T i.

Let us now compute the law of decrease of meteor body mass and

velocity as a function of atmosphere pressure.

Let us assume that the meteor body penetrates the atmosphere at

an angle _, counting from the normal. We then have

dm = Spudt = SDdx = -SD cos _ dh = _cos _ dp (dp = -gpdh) (31)
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where dx is the element of the path,

and p is the pressure.

We have

dh is the altitude variation, a

Md__u = _ _Spu 2
dt 2

= -_f(u) (32)

where

cx = 2 + a + bu
U

f(u) = _ + bou2

aO- 12_c_._- 4 RTi ) bo = b
(k - i)_ a _2c*

(33)

By excluding din, we shall have the equation

d _n M - du ffu__l_
U ±/_Cx

= du ao + bOu2

u + 1/2(a + bu2)
(34)

with the initial condition

M = M0 for u = u0

The solution of this equation is

/ . (u,uo 
(35)

_(u,uo) --2 4--% - _o(2 - ab)/b2 (a

+ _-_u - uo)
b

bu _i
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Wefurther have

cos _ dp dM dM
g =- s-_ = - s(a0 +bou_

(36)

F
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Inasmuch as, for a body of any shape

____= A82/5_113
S

where A is the dimensionless parameter depending upon the shape of

the body and its revolving in motion (for a uniformly rotating sphere)

equation (3_) has the form

cos _d_ =_ _l/3
g (ao + bou)

Taking into account equation (34), we have

ABe/3 M=M o for p =0 (37)

_oe._.=__p = ,"/Uo _i/3 : _(u)
gA62/3 du ao + bOu

(38)

Knowing the velocities for the given altitudes, it is possible to

find p = p(h), and then M = M(h).

In conclusion, let us point out that for velocity impacts, the

magnitude cx is greater than the general theory predicts. That is

why, for the given deceleration, the density of the atmosphere must

be several times lower than was earlier calculated by means of meteor

data.

Translated by Andr_ L. Brichant,

Technical Information and Educational Programs,

National Aeronautics and Space Administration.
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